The conjecture of Birch and Swinnerton-Dyer
نویسندگان
چکیده
This essay starts by first explaining, for elliptic curves defined over Q, the statement of the conjecture of Birch and Swinnerton-Dyer. Alongside, it contains a discussion of some results that have been proved in the direction of the conjecture, such as the theorem of Kolyvagin-Gross-Zagier and the weak parity theorem of Tim and Vladimir Dokchitser. The second, third and fourth part of the essay represent an account, with detailed proofs, of results about the cases of both week and strong Birch and Swinnerton-Dyer conjecture from the wonderful article by John Coates, Yongxiong Li, Ye Tian and Shuai Zhai [1]. Recently, working on the congruent number curve E : y2 = x3 − x, Ye Tian introduced a new method of attack for the following general problem. Problem. Given an elliptic curve E defined over Q, we would like to find a large explicit infinite family of square free integers M, coprime with the conductor C(E), such that L(E(M),s) has a simple zero at s = 1. Tian [21], [22] succeeded in doing this for his particular choice of curve, and, inspired by his work, the authors carry out this full programme for the elliptic curve A : y2 + xy = x3 − x2 −2x−1 in [1]. Mysteriously, this required them to prove a weak form of the 2-part of the Birch and Swinnerton-Dyer conjecture for an infinite family of quadratic twists of A, which is described at the end of the third section of this essay. The last section combines results from all the previous ones to prove the highlight of this essay, an analogue of Tian’s result for the elliptic curve A : y2 + xy = x3 − x2 −2x−1, formulated in Theorem 47. The autors of [1] belive that there should be analogues of this theorem for every elliptic curve E defined over Q and it is an important problem to formulate them precisely and then to prove them.
منابع مشابه
The Birch-swinnerton-dyer Conjecture
We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE
We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.
متن کاملComputational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves
We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over Q of analytic ranks 0 and 1. We apply our techniques to show that if E is a non-CM elliptic curve over Q of conductor ≤ 1000 and rank 0 or 1, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the L-series is true for...
متن کاملVisible Evidence for the Birch and Swinnerton-dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero Amod Agashe and William Stein, with an Appendix by J. Cremona and B. Mazur
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...
متن کاملVisible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015